
Zimbra Preact Zimlet
One of the powers of Zimbra is the ability to be extended with custom
functionality. The Zimbra front-end can be extended with JavaScript Zimlets and
the back-end can be extended with Java extensions. This article is a practical
guide to writing Preact Zimlets for Zimbra 9 and above.

Zimbra 9 introduces the so-called Modern UI. The Modern UI is fully responsive and based on
Preact. Preact itself is based on React and that is a framework for building applications on Node JS.

You will need to understand the basics of React, have some knowledge of ES6 JavaScript and NodeJS
to be able to understand the sample code in this article. A good online course that can help you with
these fundamentals can be found at https://www.udemy.com/course/the-complete-react-fullstack-
course/

This article is part of a series. There is also a guide for back-end extensions at https://github.com/
Zimbra/zm-extension-guide.

Prerequisites
To follow the steps in this article you need a Zimbra test server. You also need a version of Zimbra
that includes the Modern UI. The Modern UI is included in Zimbra Network Edition version 9 and
higher. You can set this up in a Virtual Machine in the cloud or you can install it on your local
computer inside VirtualBox/KVM/Parallels etc. If you decide to set it up on your local computer you
need at least an i5 with 16GB of RAM and a SSD. Your test server needs to be accessible over SSH.
Instructions on how to set up your Zimbra server: https://blog.zimbra.com/2018/01/install-zimbra-
collaboration-8-8-ubuntu-16-04-lts/ make sure to install the latest patches. You can find instructions
on how to install patches at https://wiki.zimbra.com/wiki/Zimbra_Releases

Deploy Mytest back-end
This article uses the Mytest back-end from the guide for back-end extensions at https://github.com/
Zimbra/zm-extension-guide. Install a pre-compiled version to be sure you have it on your
development server:

 sudo rm -Rf /opt/zimbra/lib/ext/mytest

 sudo mkdir /opt/zimbra/lib/ext/mytest

 wget https://github.com/Zimbra/zm-extension-guide/releases/download/0.0.2/mytest.jar -O

/opt/zimbra/lib/ext/mytest/mytest.jar

 su zimbra

 cd /tmp

 zmmailboxdctl restart

Syncacor, Inc. 1

https://www.udemy.com/course/the-complete-react-fullstack-course/
https://www.udemy.com/course/the-complete-react-fullstack-course/
https://github.com/Zimbra/zm-extension-guide
https://github.com/Zimbra/zm-extension-guide
https://blog.zimbra.com/2018/01/install-zimbra-collaboration-8-8-ubuntu-16-04-lts/
https://blog.zimbra.com/2018/01/install-zimbra-collaboration-8-8-ubuntu-16-04-lts/
https://wiki.zimbra.com/wiki/Zimbra_Releases
https://github.com/Zimbra/zm-extension-guide
https://github.com/Zimbra/zm-extension-guide

Enable multipart/form-data on Zimbra
Extensions
Enable multipart-config on your test server to enable processing of JSON and binary files in a single
HTTP request. Append the following:

 <multipart-config>
 </multipart-config>

To the ExtensionDispatcherServlet in the files:

• /opt/zimbra/jetty_base/etc/service.web.xml.in

• /opt/zimbra/jetty_base/webapps/service/WEB-INF/web.xml

Restart Zimbra with zmcontrol restart. The final result looks like this on 8.8.15 patch 8:

 <servlet>
 <servlet-name>ExtensionDispatcherServlet</servlet-name>
 <servlet-class>com.zimbra.cs.extension.ExtensionDispatcherServlet</servlet-class>
 <async-supported>true</async-supported>
 <load-on-startup>2</load-on-startup>
 <init-param>
 <param-name>allowed.ports</param-name>
 <param-value>8080, 8443, 7071, 7070, 7072, 7443</param-value>
 </init-param>
 <multipart-config>
 </multipart-config>
 </servlet>

More information can be found in https://github.com/Zimbra/zm-extension-guide.

Deploy the Zimlet Sideloader
You need to deploy and enable the Zimlet Sideloader on your development server. You only have to
do this step once. The Sideloader is installed like any other Zimlet with zmzimletctl from the Zimbra
user:

 zmzimletctl deploy zm-x-zimlet-sideloader.zip

2 Synacor, Inc.

https://github.com/Zimbra/zm-extension-guide

Verify that the Sideloader Zimlet is available and enabled for your Zimbra Class of Service (CoS) by
logging into the Admin UI → Home → Configure → Class of Service.

Verify that the Sideloader Zimlet is available and enabled for your Zimbra and account by logging into
the Admin UI → Home → Manage → Accounts.

Installing Zimlet CLI
You can develop Zimbra Zimlets on any OS supported by NodeJS (https://nodejs.org/en/download/).
This article will include Linux commands you can run on CentOS/Fedora/Redhat and Ubuntu. If you
run on a different OS reading these commands should help you understand what you must do to
get started.

Syncacor, Inc. 3

https://nodejs.org/en/download/

Zimbra provides a tool called Zimlet CLI that is based on Webpack. It is used for building/packaging
your Zimlet and for working with Zimlet templates. Install it on your local computer:

As root:

 yum install nodejs
 apt install nodejs
 npm install -g @zimbra/zimlet-cli

Zimlet CLI
After installing Zimlet CLI you will have the zimlet command that you can run from the command
line. Use --help to get access to the built in documentation.

zimlet --help
Zimlet client tool for developing and building Zimlets.

Type "zimlet [commmand] --help" for command specific usage information

Commands:
 zimlet create [template] [dest] Create a new zimlet.
 zimlet watch Start a development server
 zimlet build Compile a zimlet
 zimlet package Package a zimlet for deployment

You can also get command specific usage information:

zimlet create --help
zimlet create [template] [dest]

Create a new zimlet.

Options:
 --version Show version number [boolean]
 --help Show help [boolean]
 --cwd A directory to use instead of $PWD. [default: "."]
 --name The zimlet's name
 --force, -f Force `dest` directory to created if it already exists; will
 overwrite! [boolean] [default: false]
 --yarn Install with `yarn` instead of `npm` [boolean] [default: false]
 --git Initialize a `git` repository [boolean] [default: false]
 --install, -i Install dependencies [boolean] [default: true]
 --template Remote template to clone (user/repo#tag)
 --dest Directory to create the zimlet

Zimlet CLI creates Zimlets from templates. Templates are downloaded from Github. To use a

4 Synacor, Inc.

template from https://github.com/exampleuser/exampletemplate you should:

 zimlet create exampleuser/exampletemplate mytest

By default it downloads from zimbra so to use https://github.com/Zimbra/zm-x-zimlet-template-
default you can do:

 zimlet create zm-x-zimlet-template-default mytest

At the end of this article there is a chapter that explains how to use templates from Bitbucket, Gitlab
or any other (on-premise) versioning system.

Creating the mytest Zimlet
Create a folder on your local computer to store the mytest Zimlet:

 mkdir ~/zimbra_zimletx_course
 cd ~/zimbra_zimletx_course
 zimlet create zm-zimlet-guide mytest

Zimlet CLI will replace all occurrences of {{name}} in the template when it runs, but it has a bug and
some files are skipped. We can manually patch those:

 cd mytest
 sed -i 's/{{name}}/mytest/g' src/constants/index.js
 sed -i 's/{{name}}/mytest/g' src/intl/en_US.json

Next we can build the mytest Zimlet:

 zimlet build

Finally we can start a Webpack Dev server on our local machine:

 zimlet watch

The output of this command should be:

Syncacor, Inc. 5

https://github.com/exampleuser/exampletemplate
https://github.com/Zimbra/zm-x-zimlet-template-default
https://github.com/Zimbra/zm-x-zimlet-template-default

Compiled successfully!

You can view the application in browser.

Local: https://localhost:8081/index.js
On Your Network: https://192.168.1.100:8081/index.js

Visit https://localhost:8081/index.js in your browser and accept the self-signed certificate. The
index.js is a packed version of the mytest Zimlet you just created. At the end of this article there is a
chapter that explains how to use a valid SSL certificate.

Sideload the mytest Zimlet
Log on to your Zimbra development server and make sure that you are seeing the modern UI. Then
append /sdk/zimlets to the URL.

Sideload the mytest Zimlet by clicking Load Zimlet. The Zimlet is now added to
the Zimbra UI in real-time. No reload is necessary.

Click on the mytest tab. If you followed the guide for back-end extensions this
should look familiar. As what we see is an iframe that loads the extension
from /service/extension/mytest.

Click the Send JSON button to send the HTML form to the back-end. The server will respond with a

6 Synacor, Inc.

https://localhost:8081/index.js

copy of the JSON data with added JSON elements for each file you uploaded.

Click the mytest menu item in the More menu.

The selected email is sent to the back-end in JSON format, and the contents is displayed in the modal
dialog.

Syncacor, Inc. 7

Click the mytest link in the dialog. This will show a demo toaster notification and switch to the mytest
tab.

Summary of the functionality implemented in the mytest Zimlet:

• Create a new tab in the UI

• Implement a More menu item

• Show a modal dialog

• Show a toaster notification

• Redirect users by clicking a link

Setting up Visual Studio Code
Visual Studio Code is an integrated development environment (IDE). It supports React out of the
box and it will check your code for errors while you type it. It also has code auto-completion and
automatic formatting of source files. There is a tutorial that shows you all NodeJS/React features:
https://code.visualstudio.com/docs/nodejs/reactjs-tutorial

Go to https://code.visualstudio.com/ and install Visual Studio Code on your local computer.

To open the mytest Zimlet in Visual Studio Code click File → Open Folder and select
~/zimbra_zimletx_course/mytest/

8 Synacor, Inc.

https://code.visualstudio.com/docs/nodejs/reactjs-tutorial
https://code.visualstudio.com/

Visual Studio Code with the mytest Zimlet loaded, pretty much works out of the box.

Getting Started
Zimlets are essentially Preact components that run in a sandbox within the Zimbra web
application. Throughout the Zimbra application, there are hooks made available to Zimlets for
injecting components into the application. These hooks are called ZimletSlots.

To see which slots are available in the UI, add ?zimletSlots=show to the end of the URL of Zimbra.
This will show all of the places in the active UI where ZimletSlots are available.

Syncacor, Inc. 9

Slots that are not visible, such as the routes slot which allows for adding URL routes to screens in
the app, will present a message in the browser console, such as:

 non-visible ZimletSlot name=routes
 non-visible ZimletSlot name=searchInputPlaceholder

The ZimletSlots will remain visible until the page is refreshed without zimletSlots=show in the URL.

Zimbra passes the Zimlet context object into every Zimlet when they are created. Context allows the
Zimlet to interact with the main application by registering plugins. It allows the main application to
pass data into the Zimlet. Zimbra passes the context only to the component defined in src/index.js.
You need to pass the context to any additional components that need it.

Here are some examples that show you how to work with context:

//getAccount() is a function in the context object. It returns an object with current account name, id, display name and

other account attributes:

context.getAccount()

//Get an object with the name 'plugins' from context and define it in the current scope:

const { plugins } = context;

//Call the register function from the 'plugins' object to register a Zimlet slot:

plugins.register('slot::action-menu-mail-more', moreMenu);

//Get a function with the name 'dispatch' from an object with the name 'store' and define in the scope

const { dispatch } = context.store;

//Call the dispatch function to show a modal dialog defined in this.modal.

dispatch(context.zimletRedux.actions.zimlets.addModal({ id: 'addEventModal', modal: this.modal }));

10 Synacor, Inc.

Dependencies and shims
Re-usable components from the Zimbra application are made available to the Zimlet via shims. You
can find the latest shims in context.shims. To use the ModalDialog function from the @zimbra-
client/components shim you would import it like this:

import { ModalDialog } from '@zimbra-client/components';

Please be aware that when you sideload a Zimlet, the shims are provided by Zimlet CLI from your
local machine. These shims may differ from the ones in the Zimbra application. This will happen for
example if outdated Zimlet CLI/shims and (node) modules are available on your local machine. It is
recommended to test your work from time to time in a fresh environment.

Package.json and package-lock.json
Take a look at package.json and make sure you do not include dependencies that are already
shimmed. Be aware that package-lock.json gets generated automatically from your package.json
and as long as package-lock.json exists the dependencies from that file take precedence over
package.json. package-lock.json does not automatically regenerate if you make changes to
package.json!

Gotchas
• A lot of React code examples use setState to trigger re-rendering of components. Be careful

when using it as it works asynchronous and avoid it if you can.

• The Zimlet is Sandboxed and runs in a separate environment that feels like an iframe. Global
variables like window.location can be accessed using window.parent.location.

• Interacting with the DOM directly will not work in most cases as that is abstracted away by the
framework. If you really must you can do things like window.parent.querySelectorAll and
window.parent.document.body.appendChild.

Analyzing the Zimlet
Now that you have created a Zimlet and see it running in the UI. You can use Visual Studio Code to
analyze the code to understand how the example Zimlet mytest works. Import statements can
import components, json data, stylesheets etc. These imports can be dependencies provided by the
Zimbra application/Zimlet CLI or be components from your Zimlet. Usually when an import starts
with ./ or ../ it is a component from your Zimlet. Otherwise it is a dependency.

Syncacor, Inc. 11

//This is a dependency loaded from Zimbra:
import { createElement } from "preact";

//These are dependencies from our Zimlet sources:
import createMore from "./components/more";
import MoreMenu from '../more-menu';

Zimlet index.js
The index.js in the root of your src folder will be called by Zimbra to load your Zimlet. This is where
you configure what Zimlet slots to use and what routes to add to the application. A route is a
location in the URL of your browser. Read the comments in code to learn more:

12 Synacor, Inc.

//Load components from Zimbra

import { createElement } from "preact";

import { Text } from "preact-i18n";

import { SLUG } from "./constants";

import { withIntl } from "./enhancers";

import { MenuItem } from "@zimbra-client/components";

//Load the App component from our Zimlet

import App from "./components/app";

//Load the createMore function from our Zimlet component

import createMore from "./components/more";

//Load a style static stylesheet (Preact will not change this)

import './public/styles.css';

//Create function by Zimbra convention

export default function Zimlet(context) {

 //Get the 'plugins' object from context and define it in the current scope

 const { plugins } = context;

 const exports = {};

 //moreMenu stores a Zimlet menu item. We pass context to it here

 const moreMenu = createMore(context, <Text id={`app.menuItem`}/>);

 exports.init = function init() {

 // The zimlet slots to load into, and what is being loaded into that slot

 // (CustomMenuItem and Router are both defined below)

 plugins.register("slot::menu", CustomMenuItem);

 // Only needed if you need to create a new url route, like for a menu tab, or print, etc

 plugins.register("slot::routes", Router);

 //Here we load the moreMenu Zimlet item into the UI slot:

 plugins.register('slot::action-menu-mail-more', moreMenu);

 };

 // Register a new route with the preact-router instance

 function Router() {

 return [<App path={`/${SLUG}`} />];

 }

 // Create a main nav menu item.

 // withIntl should be used on every component registered via plugins.register().

 const CustomMenuItem = withIntl()(() => (

 // List of components can be found in zm-x-web, zimlet-manager/shims.js, and more can be added if needed

 <MenuItem responsive href={`/${SLUG}`}>

 <Text id={`app.menuItem`} />

 </MenuItem>

));

 return exports;

}

If you do not understand the use of <> and {} take a look at the at https://www.udemy.com/course/
the-complete-react-fullstack-course/.

Syncacor, Inc. 13

https://www.udemy.com/course/the-complete-react-fullstack-course/
https://www.udemy.com/course/the-complete-react-fullstack-course/

More menu

The mytest item in the More menu is registered in the main index.js with these lines of code:

import createMore from "./components/more";
const moreMenu = createMore(context, <Text id={`app.menuItem`}/>);

<Text> is a helper component to get a string in the language preferred by the user. See
src/intl/en_US.json. createMore is imported from src/components/more/index.js and is included
here for reference:

import { createElement } from 'preact';
import MoreMenu from '../more-menu';

export default function createMore(context, menuItemText) {
 return props => (
 <MoreMenu {...props}>{{context, menuItemText}}</MoreMenu>
);
}

createMore is a wrapper around another component from our Zimlet called MoreMenu. The reason
behind this has to do with the implementation of Zimbra. But also has to do with the difference
between functional and class based components in (p)react and what you can pass to them.

The important thing to notice is that createMore(context, <Text id={`app.menuItem}/>` is a function

14 Synacor, Inc.

call with the arguments context and <text…>. And those are called context and menuItemText in the
createMore function. Then they are passed as children to the MoreMenu component and the props
are passed on from the Zimbra application.

The MoreMenu component in src/components/more-menu/index.js takes care of the functionality of
the menu but it also does the HTML rendering to actually show it. The context and menuItemText
are stored to the instance of the class in the constructor. To find out what props are passed from
Zimbra to the MoreMenu you can add a console.log(this.props) to the code. You will see that
this.props.emailData will contain an object with the email data.

export default class MoreMenu extends Component {
 constructor(props) {
 super(props);
 this.zimletContext = props.children.context;
 this.menuItemText = props.children.menuItemText;
 };

Open src/components/more-menu/index.js to find out how to:

• Show a modal dialog

• Show a toaster notification

• Redirect users by clicking a link

Zimlet tab

Similar to to more menu a new tab is added to the UI. The mytest tab is registered in the main
index.js with these lines of code:

Syncacor, Inc. 15

import { SLUG } from "./constants";

import { MenuItem } from "@zimbra-client/components";

const { plugins } = context;

plugins.register("slot::menu", CustomMenuItem);

// Register a new route with the preact-router instance

function Router() {

 return [<App path={`/${SLUG}`} />];

}

// Create a main nav menu item.

// withIntl should be used on every component registered via plugins.register(). You will see this in the App index.js

file as well

const CustomMenuItem = withIntl()(() => (

 // List of components can be found in zm-x-web, zimlet-manager/shims.js, and more can be added if needed

 <MenuItem responsive href={`/${SLUG}`}>

 <Text id={`app.menuItem`} />

 </MenuItem>

));

CustomMenuItem holds the HTML loaded into the slot and has the HTML link to our tab. <MenuItem>
is a component that returns HTML and SLUG is a static string loaded from src/constants/index.js.
The Router() function is what ties an instance of App to the url location of our tab.

Packaging for Production
To create a Zimlet zip file to be used with zmzimletctl deploy you can use zimlet package command.
The zip will be in the pkg folder:

 zimlet package -v 0.0.1 --zimbraXVersion ">=0.0.1" -n "mytest-zimlet" --desc "A test Zimlet"

Use a trusted SSL certificate for Zimlet CLI
By default Zimlet-CLI will generate a self-signed certificate. Web browsers will give you the option
to temporary trust the certificate by clicking Accept the risk or Proceed to localhost (unsafe).
From time to time browsers will require you to re-confirm trusting the certificate. Since the
Sideloader Zimlet cannot answer trusts questions it will fail in the background when this happens.
If you want you can install a trusted certificate so your work is not interrupted. This example uses
Let’s Encrypt:

 #stop your dev server by hitting CTRL+C or `killall node`

 cat /etc/letsencrypt/live/zimlets.example.com/privkey.pem >

 '/usr/local/lib/node_modules/@zimbra/zimlet-cli/node_modules/webpack-dev-server/ssl/server.pem'

 cat /etc/letsencrypt/live/zimlets.example.com/cert.pem >>

 '/usr/local/lib/node_modules/@zimbra/zimlet-cli/node_modules/webpack-dev-server/ssl/server.pem'

 export HOST=zimlets.example.com && zimlet watch

16 Synacor, Inc.

Using Zimlet CLI templates from Bitbucket,
Gitlab and others
You can use Zimlet CLI with Zimlet templates from Bitbucket, Gitlab, on premise git or a local
folder. To do this you need to create a master.tar.gz in a folder structure like this:

~/.gittar/
└── github
 └── zimbra
 └── my-private-zimlet
 └── master.tar.gz

master.tar.gz must have a structure like below and the name of my-private-zimlet must correspond
with the folder structure above. The template folder must be present:

master.tar.gz
└── my-private-zimlet
 ├── LICENSE
 └── template
 ├── package.json
 ├── README.md
 ├── src
 │ ├── components
 │ │ ├── app
 │ │ │ ├── index.js
 │ │ │ └── style.less
 │ │ ├── more
 │ │ │ └── index.js
 │ │ └── more-menu
 │ │ ├── index.js
 │ │ └── style.less
 │ ├── constants
 │ │ └── index.js
 │ ├── enhancers.js
 │ ├── index.js
 │ ├── intl
 │ │ └── en_US.json
 │ └── public
 │ └── styles.css
 ├── tsconfig.json
 └── zimlet.config.js

You can now invoke Zimlet CLI using:

Syncacor, Inc. 17

 unshare -n -r zimlet create my-private-zimlet mynewzimlet -i false
 npm install

The zimlet command uses gittar to fetch a tgz compressed archive from Github. Gittar falls back to
the locally available master.tar.gz because we have rejected network access to it by the use of the
unshare command. Notice the additional option -i false to instruct Zimlet CLI not to install npm
dependencies it will not work without network access. To install the dependencies we run npm
install manually.

Further reading
https://github.com/Zimbra/zimlet-cli/wiki

18 Synacor, Inc.

https://github.com/Zimbra/zimlet-cli/wiki

	Zimbra Preact Zimlet
	Prerequisites
	Deploy Mytest back-end
	Enable multipart/form-data on Zimbra Extensions
	Deploy the Zimlet Sideloader
	Installing Zimlet CLI
	Zimlet CLI
	Creating the mytest Zimlet
	Sideload the mytest Zimlet
	Setting up Visual Studio Code
	Getting Started
	Dependencies and shims
	Package.json and package-lock.json

	Gotchas
	Analyzing the Zimlet
	Zimlet index.js
	More menu
	Zimlet tab
	Packaging for Production
	Use a trusted SSL certificate for Zimlet CLI
	Using Zimlet CLI templates from Bitbucket, Gitlab and others
	Further reading

